Главная Новости

Медная вода, распространение меди в природе, физические и химические свойства меди, применение меди в медицине

Опубликовано: 04.09.2018

Медь относится к числу металлов, известных с глубокой древности. Раннему знакомству человека с медью способствовало то, что она встречается в природе в свободном состоянии в виде самородков, которые иногда достигают значительных размеров. Медь и ее сплавы сыграли большую роль в развитии материальной культуры. Благодаря легкой восстановимости оксидов и карбонатов Медь была, по-видимому, первым металлом, который человек научился восстановлять из кислородных соединений, содержащихся в рудах. Латинское название меди происходит от названия острова Кипр (лат. Cuprum), где древние греки добывали медную руду. В древности для обработки скальной породы ее нагревали на костре и быстро охлаждали, причем порода растрескивалась. Уже в этих условиях были возможны процессы восстановления. В дальнейшем восстановление вели в кострах с большим количеством угля и с вдуванием воздуха посредством труб и мехов. Костры окружали стенками, которые постепенно повышались, что привело к созданию шахтной печи. Позднее методы восстановления уступили место окислительной плавке сульфидных медных руд с получением промежуточных продуктов - штейна (сплава сульфидов), в котором концентрируется Медь, и шлака (сплава окислов).

Распространение меди в природе

Среднее содержание меди в земной коре 4,7·10-3 % (по массе), в нижней части земной коры, сложенной основными породами, ее больше (1·10-2%), чем в верхней (2·10-3%), где преобладают граниты и другие кислые изверженные породы. Медь энергично мигрирует как в горячих водах глубин, так и в холодных растворах биосферы; сероводород осаждает из природных вод различные сульфиды Меди, имеющие большое промышленное значение. Среди многочисленных минералов Меди преобладают сульфиды, фосфаты, сульфаты, хлориды, известны также самородная Медь, карбонаты и оксиды.

Медь - важный элемент жизни, она участвует во многих физиологических процессах. Среднее содержание меди в живом веществе 2·10-4%, известны организмы - концентраторы меди. В таежных и других ландшафтах влажного климата медь сравнительно легко выщелачивается из кислых почв, здесь местами наблюдается дефицит меди и связанные с ним болезни растений и животных (особенно на песках и торфяниках). В степях и пустынях (с характерными для них слабощелочными растворами) медь малоподвижна; на участках месторождений Медь наблюдается ее избыток в почвах и растениях, отчего болеют домашние животные.

В речной воде очень мало меди, 1·10-7%. Приносимая в океан со стоком медь сравнительно быстро переходит в морские илы. Поэтому глины и сланцы несколько обогащены медью (5,7·10-3%), а морская вода резко недосыщена медью (3·10-7%).

В морях прошлых геологических эпох местами происходило значительное накопление меди в илах, приведшее к образованию месторождений (например, Мансфельд в Германии). Медь энергично мигрирует и в подземных водах биосферы, с этими процессами связано накопление медных руд в песчаниках.

Физические свойства меди

Цвет меди красный, в изломе розовый, при просвечивании в тонких слоях зеленовато-голубой. Металл имеет гранецентрированную кубическую решетку с параметром а = 3,6074 Å; плотность 8,96 г/см3 (20 °С). Атомный радиус 1,28 Å; ионные радиусы Cu+ 0,98 Å; Сu2+ 0,80 Å; tпл1083 °С; tкип 2600 °С; удельная теплоемкость (при 20 °С) 385,48 дж/(кг·К), т.е. 0,092 кал/(г·°С). Наиболее важные и широко используемые свойства меди: высокая теплопроводность - при 20 °С 394,279 вт/(м·К.), то есть 0,941 кал/(см·сек·°С); малое электрическое сопротивление - при 20 °С 1,68·10-8 ом·м. Термический коэффициент линейного расширения 17,0·10-6. Давление паров над медью ничтожно, давление 133,322 н/м2 (т.е. 1 мм рт.ст.) достигается лишь при 1628 °С. Медь диамагнитна; атомная магнитная восприимчивость 5,27·10-6. Твердость меди 350 Мн/м2 (т. е. 35 кгс/мм2); предел прочности при растяжении 220 Мн/м2 (т. е. 22 кгс/мм2); относительное удлинение 60%, модуль упругости 132·103 Мн/м2(т.е. 13,2·103 кгс/мм2).

Химические свойства меди

По химическим свойствам медь занимает промежуточное положение между элементами первой триады VIII группы и щелочными элементами I группы системы Менделеева. Медь, как и Fe, Co, Ni, склонна к комплексообразованию, дает окрашенные соединения, нерастворимые сульфиды и т. д. Сходство с щелочными металлами незначительно. Так, медь образует ряд одновалентных соединений, однако для нее более характерно 2-валентное состояние. Соли одновалентной меди в воде практически нерастворимы и легко окисляются до соединений 2-валентной меди; соли 2-валентной меди, напротив, хорошо растворимы в воде и в разбавленных растворах полностью диссоциированы.

Гидратированные ионы Cu2+ окрашены в голубой цвет. Известны также соединения, в которых медь 3-валентна. Так, действием пероксида натрия на раствор куприта натрия Na2CuO2 получен оксид Сu2О3 - красный порошок, начинающий отдавать кислород уже при 100 °С. Сu2О3 - сильный окислитель (например, выделяет хлор из соляной кислоты).

Химическая активность меди невелика. Компактный металл при температурах ниже 185 °С с сухим воздухом и кислородом не взаимодействует. В присутствии влаги и СО2 на поверхности Меди образуется зеленая пленка основного карбоната. При нагревании Меди на воздухе идет поверхностное окисление; ниже 375 °С образуется СuО, а в интервале 375-1100 °С при неполном окислении Медь - двухслойная окалина, в поверхностном слое которой находится СuО, а во внутреннем - Сu2О. Влажный хлор взаимодействует с Медью уже при обычной температуре, образуя хлорид СuCl2, хорошо растворимый в воде. Медь легко соединяется и с других галогенами. Особое сродство проявляет Медь к сере и селену; так, она горит в парах серы. С водородом, азотом и углеродом Медь не реагирует даже при высоких температурах. Растворимость водорода в твердой Медь незначительна и при 400 °С составляет 0,06 мг в 100 г Меди. Водород и других горючие газы (СО, СН4), действуя при высокой температуре на слитки Меди, содержащие Сu2О, восстановляют ее до металла с образованием СО2 и водяного пара. Эти продукты, будучи нерастворимыми в Меди, выделяются из нее, вызывая появление трещин, что резко ухудшает механические свойства Меди.

При пропускании NН3 над раскаленной медью образуется Cu3N. Уже при температуре каления Медь подвергается воздействию оксидов азота, а именно NO, N2O (с образованием Сu2О) и NO2 (с образованием СuО). Карбиды Сu2С2 и СuС2 могут быть получены действием ацетилена на аммиачные растворы солей Меди. Нормальный электродный потенциал меди для реакции Сu2+ + 2е -> Сu равен +0,337 в, а для реакции Сu+ + е ->Сu равен +0,52 в. Поэтому Медь вытесняется из своих солей более электроотрицательными элементами (в промышленности используется железо) и не растворяется в кислотах-неокислителях. В азотной кислоте медь растворяется с образованием Cu(NO3)2 и оксидов азота, в горячей концентрированной H2SO4 -с образованием CuSO4 и SO2, в нагретой разбавленной H2SO4 - при продувании через раствор воздуха. Все соли меди ядовиты.

Медь в двух- и одновалентном состоянии образует многочисленные весьма устойчивые комплексные соединения. Примеры комплексных соединений одновалентной Меди: (NH4)2CuBr3; K3Cu(CN)4- комплексы типа двойных солей; [Cu{SC(NH2)}2]Cl и другие. Примеры комплексных соединений 2-валентной Меди: CsCuCl3, K2CuCl4 - тип двойных солей. Важное промышленное значение имеют аммиачные комплексные соединения Меди: [Сu (NH3)4] SO4, [Сu (NH3)2] SO4.

Получение Меди

Медные руды характеризуются невысоким содержанием меди. Поэтому перед плавкой тонкоизмельченную руду подвергают механическому обогащению; при этом ценные минералы отделяются от основные массы пустой породы; в результате получают ряд товарных концентратов (например, медный, цинковый, пиритный).

В мировой практике 80% медь извлекают из концентратов пирометаллургическими методами, основанными на расплавлении всей массы материала. В процессе плавки, вследствие большего сродства меди к сере, а компонентов пустой породы и железа к кислороду, медь концентрируется в сульфидном расплаве (штейне), а оксиды образуют шлак.

На большинстве современных заводов плавку ведут в отражательных или в электрических печах. В отражательных печах рабочее пространство вытянуто в горизонтальном направлении; площадь пода 300 м2и более (30 м х 10 м); необходимое для плавления тепло получают сжиганием углеродистого топлива (природный газ, мазут) в газовом пространстве над поверхностью ванны. В электрических печах тепло получают пропусканием через расплавленный шлак электрического тока (ток подводится к шлаку через погруженные в него графитовые электроды).

Однако и отражательная, и электрическая плавки, основанные на внешних источниках теплоты, - процессы несовершенные. Сульфиды, составляющие основные массу медных концентратов, обладают высокой теплотворной способностью. Поэтому все больше внедряются методы плавки, в которых используется теплота сжигания сульфидов (окислитель - подогретый воздух, воздух, обогащенный кислородом, или технический кислород). Мелкие, предварительно высушенные сульфидные концентраты вдувают струей кислорода или воздуха в раскаленную до высокой температуры печь. Частицы горят во взвешенном состоянии (кислородно-взвешенная плавка).

Богатые кусковые сульфидные руды (2-3% Сu) с высоким содержанием серы (35-42% S) в ряде случаев непосредственно направляются на плавку в шахтных печах (печи с вертикально расположенным рабочим пространством). В одной из разновидностей шахтной плавки (медносерная плавка) в шихту добавляют мелкий кокс, восстановляющий в верхних горизонтах печи SO2 до элементарной серы. Медь в этом процессе также концентрируется в штейне.

Применение Меди

Большая роль меди в технике обусловлена рядом ее ценных свойств и прежде всего высокой электропроводностью, пластичностью, теплопроводностью. Благодаря этим свойствам Медь - основные материал для проводов; свыше 50% добываемой Меди применяют в электротехнической промышленности. Все примеси понижают электропроводность Меди, а потому в электротехнике используют металл высших сортов, содержащий не менее 99,9% Cu. Высокие теплопроводность и сопротивление коррозии позволяют изготовлять из Меди ответственные детали теплообменников, холодильников, вакуумных аппаратов и т. п. Около 30-40% Меди используют в виде различных сплавов, среди которых наибольшее значение имеют латуни (от 0 до 50% Zn) и различные виды бронз: оловянистые, алюминиевые, свинцовистые, бериллиевые и т. д. Кроме нужд тяжелой промышленности, связи, транспорта, некоторое количество Меди (главным образом в виде солей) потребляется для приготовления минеральных пигментов, борьбы с вредителями и болезнями растений, в качестве микроудобрений, катализаторов окислительных процессов, а также в кожевенной и меховой промышленности и при производстве искусственного шелка.

Медь как художественный материал используется с медного века (украшения, скульптура, утварь, посуда). Кованые и литые изделия из Меди и сплавов украшаются чеканкой, гравировкой и тиснением. Легкость обработки Меди (обусловленная ее мягкостью) позволяет мастерам добиваться разнообразия фактур, тщательности проработки деталей, тонкой моделировки формы. Изделия из Меди отличаются красотой золотистых или красноватых тонов, а также свойством обретать блеск при шлифовке. Медь нередко золотят, патинируют, тонируют, украшают эмалью. С 15 века Медь применяется также для изготовления печатных форм.

Применение меди в медицине

В медицине медь в виде сульфата меди также применяется в качестве антисептического и вяжущего средства в виде глазных капель при конъюнктивитах и глазных карандашей для лечения трахомы. Раствор сульфата медь используют также при ожогах кожи фосфором. Иногда сульфат меди применяют как рвотное средство. Нитрат меди употребляют в виде глазной мази при трахоме и конъюнктивитах.

О.В. Мосин Кандидат химических наук

Смотрите также:

У нас также читают:

Новости

rss